# Общество с ограниченной ответственностью «КРЕЙТ»

# Расширитель дискретный РД-25

Руководство по эксплуатации ПВРТ.421242.001 РЭ

# Содержание

| ТЕРМИНЫ И СОКРАЩЕНИЯ                                | 3  |
|-----------------------------------------------------|----|
| 1 НАЗНАЧЕНИЕ И ФУНКЦИИ                              | 4  |
| 2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И УСЛОВИЯ ЭКСПЛУАТАЦИИ | 4  |
| 2.1 Общие характеристики изделия                    | 4  |
| 2.2 Характеристики входов                           | 6  |
| 2.3 Характеристики выходов                          | 6  |
| 2.4 Условия эксплуатации                            | 6  |
| 3 КОМПЛЕКТНОСТЬ                                     | 7  |
| 4 МАРКИРОВКА                                        |    |
| 5 УПАКОВКА                                          | 7  |
| 6 МЕРЫ БЕЗОПАСНОСТИ                                 | 7  |
| 7 ПОДКЛЮЧЕНИЕ                                       | 8  |
| 7.1 Монтаж                                          | 8  |
| 7.2 Подключение питания                             | 8  |
| 7.3 Подключение к ПК                                | 8  |
| 7.4 Подключение датчиков к входам                   | 10 |
| 7.5 Подключение исполнительных механизмов к выходам | 11 |
| 7.6 Подключение по CAN-шине                         | 11 |
| 8 ЗАЩИТА ИНФОРМАЦИИ                                 |    |
| 9 РЕЖИМЫ РАБОТЫ                                     |    |
| 10 ПОДГОТОВКА К ЭКСПЛУАТАЦИИ                        | 12 |
| 10.1 Настройка входов                               | 12 |
| 10.2 Настройка выходов                              | 14 |
| 10.3 Настройка CAN                                  |    |
| 11 ЭКСПЛУАТАЦИЯ                                     | 16 |
| 11.1 Ввод в эксплуатацию                            | 16 |
| 11.2 Индикация                                      |    |
| 12 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ                         |    |
| 13 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ                     |    |
| 14 ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА                        |    |
| 15 УТИЛИЗАЦИЯ                                       |    |
| Приложение А Внешний вид РД-25                      |    |
| Приложение Б Назначение контактов РД-25             |    |
| Припожение В Гапьваническая развязка в РЛ-25        | 20 |

Настоящее руководство по эксплуатации (далее по тексту – РЭ) распространяется на расширитель дискретный РД-25 (далее – РД-25 или контроллер) и предназначено для изучения его конструкции, технических характеристик, принципов работы, методик настройки и эксплуатации.

РД-25 выпускается согласно Техническим условиям ПВРТ.421242.001 ТУ.

Эксплуатационная документация на контроллер состоит из настоящего руководства по эксплуатации и паспорта.

В связи с постоянной работой по совершенствованию изделия, повышающей его надежность, в конструкцию могут быть внесены незначительные изменения, не отраженные в данном руководстве. Актуальная версия руководства доступна на сайте предприятия-изготовителя по адресу: www.kreit.ru.

Полное обозначение: Расширитель дискретный РД-25 ПВРТ.421242.001.

Сокращенное обозначение: РД-25.

В тексте данного руководства встречаются ссылки на документ «Интегрированная среда разработки прикладных программ «РОМБ-3». Руководство пользователя» ПВРТ.ПК.001.РП (далее по тексту – Руководство пользователя ПВРТ.ПК.001.РП).

#### ТЕРМИНЫ И СОКРАЩЕНИЯ

| Термин<br>(сокращение) | Определение<br>(расшифровка)                                                                                                     |  |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|
| БП                     | Блок питания                                                                                                                     |  |
| ЛКМ                    | Левая кнопка мыши                                                                                                                |  |
| Параметр               | Единица данных в контроллере                                                                                                     |  |
| ПК                     | Персональный компьютер                                                                                                           |  |
| ПЛК                    | Программируемый логический контроллер                                                                                            |  |
| ПО                     | Программное обеспечение                                                                                                          |  |
| Системные<br>функции   | Функции (алгоритмы), необходимые для поддержания работы контроллера                                                              |  |
| Функция<br>(алгоритм)  | Часть внутренней программы контроллера (минимальная единица прикладной программы), не доступная для редактирования пользователем |  |
| CAN-BUS                | Скоростная децентрализованная промышленная магистраль обмена данными                                                             |  |
| USB                    | Universal Serial Bus (универсальная последовательная шина)                                                                       |  |

## 1 НАЗНАЧЕНИЕ И ФУНКЦИИ

- 1.1 РД-25 предназначен для расширения количества дискретных входов и выходов в системах управления, построенных на базе программируемого логического контроллера ПЛК-25 ПВРТ.421243.01 производства ООО «КРЕЙТ» (далее по тексту ПЛК-25).
  - 1.2 Функции РД-25:
  - измерение и преобразование дискретных сигналов;
  - формирование дискретных сигналов;
  - прием и передача данных по шине CAN-BUS;
  - индикация состояний входов и выходов.

## 2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И УСЛОВИЯ ЭКСПЛУАТАЦИИ

#### 2.1 Общие характеристики изделия

- 2.1.1 Контроллер выпускается в стандартном электротехническом корпусе, предназначенном для шкафного монтажа на DIN-рейку 35 мм.
- 2.1.2 Внешний вид РД-25 отображен на рисунках А.1 и А.2 в Приложении А, габаритные размеры в таблице 1. Назначение клемм и наименования сигналов контроллера приведены в таблице Б.1 в Приложении Б.
- 2.1.3 Функциональная схема контроллера изображена на рисунке 1, общие технические характеристики – в таблице 1. Схема гальванической развязки приведена в Приложении В.

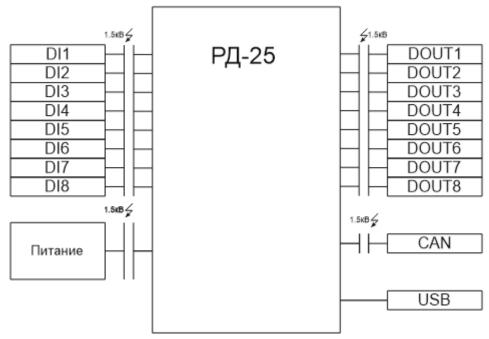



Рисунок 1 – Функциональная схема РД-25, где 🗲 – наличие гальванической изоляции

Таблица 1 – Краткие технические характеристики РД-25

| Параметр                                           | Значение                                               |  |  |  |
|----------------------------------------------------|--------------------------------------------------------|--|--|--|
| Питание                                            |                                                        |  |  |  |
| Количество портов питания                          | 1                                                      |  |  |  |
| Напряжение источника постоянного тока              | 24 B                                                   |  |  |  |
| Потребляемая мощность, не более                    | 5 Вт                                                   |  |  |  |
| Защита от обратной полярности питающего напряжения | Есть                                                   |  |  |  |
| CAN                                                |                                                        |  |  |  |
| Количество портов                                  | 1 (CAN 2.0A)                                           |  |  |  |
| Скорости передачи                                  | 20; 50; 100; 150; 250; 300; 500; 1000 кБит/с           |  |  |  |
| USB (Virtual CO                                    | M-port)                                                |  |  |  |
| Тип разъема                                        | mini-USB                                               |  |  |  |
| Поддерживаемые протоколы                           | FT 1.2 (по части 5 раздела 1<br>ГОСТ Р МЭК 870-5-1-95) |  |  |  |
| Общие сведения                                     |                                                        |  |  |  |
| Габаритные размеры (длина × высота × глубина)      | (70 × 86 × 56) ± 1 мм                                  |  |  |  |
| Масса, не более                                    | 0.5 кг                                                 |  |  |  |
| Степень защиты корпуса по ГОСТ 14254               | IP20                                                   |  |  |  |
| Средний срок службы                                | 12 лет                                                 |  |  |  |

- 2.1.4 В верхней и нижней стенках корпуса РД-25 расположены клеммы входов и выходов (см. рисунок А.1 в Приложении А). Характеристики входов приведены в п. 2.2, а выходов в п. 2.3.
- 2.1.5 На передней панели контроллера в два ряда размещены шестнадцать светодиодных индикаторов (подробнее об индикации см. п. 11.2 настоящего РЭ).
- 2.1.6 Средняя наработка на отказ не менее 50000 ч. Критерием отказа является несоответствие требованиям ПВРТ.421242.001 ТУ.
- 2.1.7 Среднее время восстановления работоспособного состояния объекта после от-каза РД-25 не превышает 1 ч.
- 2.1.8 Средний срок службы не менее 12 лет. Критерием предельного состояния является превышение затрат на ремонт свыше 50 % стоимости нового контроллера.

## 2.2 Характеристики входов

Характеристики входов РД-25 приведены в таблице 2.

Таблица 2 – Технические и метрологические характеристики входов

| Характеристика                                                         | Значение                       |
|------------------------------------------------------------------------|--------------------------------|
| Количество входов                                                      | 8                              |
| Режим работы                                                           | Определение логического уровня |
| Тип входов                                                             | Опто-транзистор                |
| Напряжение «логического нуля»                                          | 05 B                           |
| Напряжение «логической единицы»                                        | 1530 B                         |
| Минимальная длительность импульса                                      | 100 мкс                        |
| Максимальная измеряемая частота следования импульсов                   | 5 кГц                          |
| Абсолютная погрешность при измерении ча-<br>стоты следования импульсов | ± (0.02 × f) кГц               |

## 2.3 Характеристики выходов

Характеристики выходов РД-25 приведены в таблице 3.

Таблица 3 – Технические и метрологические характеристики выходов

| Характеристика                                                                    | Значение                                                                                                                                               |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Количество выходов                                                                | 8                                                                                                                                                      |
| Тип выходов                                                                       | Транзисторный ключ                                                                                                                                     |
| Режим работы                                                                      | <ul><li>ключ (переключение логического состояния);</li><li>генерация ШИМ-сигнала.</li></ul>                                                            |
| Напряжение питания выходов                                                        | 1530 B                                                                                                                                                 |
| Максимальный постоянный ток нагрузки                                              | 0.5 A                                                                                                                                                  |
| Максимально кратковременный (в течение 1 с) ток нагрузки                          | 2 A                                                                                                                                                    |
| Максимальная генерируемая частота следования импульсов (для резистивной нагрузки) | 100 кГц для выходов с поддержкой ШИМ                                                                                                                   |
| Абсолютная погрешность генерируемой частоты следования импульсов                  | ± (0.02 × f) кГц                                                                                                                                       |
| Типы защиты выходов                                                               | <ul><li>защита от обратной полярности питающего напряжения;</li><li>защита от обратного тока самоиндукции;</li><li>защита от перенапряжения.</li></ul> |

#### 2.4 Условия эксплуатации

Защищенность РД-25 от проникновения воды и внешних твердых предметов соответствует степени защиты IP20 по ГОСТ 14254. Остальные климатические и эксплуатационные характеристики контроллера приведены в таблице 4.

Таблица 4 – Условия эксплуатации

| Характеристика                  | Ограничение                                                                                  |
|---------------------------------|----------------------------------------------------------------------------------------------|
| Место размещения                | Закрытые помещения без агрессивных паров и газов                                             |
| Температура окружающего воздуха | От +5 °C до +50 °C<br>(группа исполнения В4 ГОСТ Р 52931)                                    |
| Относительная влажность воздуха | От 10 до 80 % при 35 °C и ниже, без конденсации влаги<br>(группа исполнения В4 ГОСТ Р 52931) |
| Атмосферное давление            | Не ограничено<br>(в соответствии с Примечанием 1 к таблице 1 ГОСТ Р 52931)                   |
| Частота синусоидальных вибраций | От 10 до 55 Гц<br>(группа исполнения N2 по ГОСТ Р 52931)                                     |

#### 3 КОМПЛЕКТНОСТЬ

Комплект поставки контроллера приведен в таблице 5.

Таблица 5 – Комплект поставки

| Наименование | Обозначение        | Количество |
|--------------|--------------------|------------|
| РД-25        | ПВРТ.421242.001    | 1          |
| Паспорт      | ПВРТ.421242.001 ПС | 1          |

Примечание — Источник питания для РД-25 и соединительные кабели в комплект поставки не входят и должны приобретаться отдельно.

#### 4 МАРКИРОВКА

- 4.1 РД-25 имеет следующую маркировку на лицевой панели: логотип предприятия-изготовителя «КРЕЙТ» и краткое название контроллера «РД-25».
- 4.2 РД-25 имеет следующую маркировку на задней панели: заводской шифр изделия и заводской порядковый номер.

#### 5 УПАКОВКА

- 5.1 РД-25 упакован в полиэтиленовый пакет с застежкой ZIP-LOCK и в коробку из гофрокартона.
- 5.2 В упаковочную коробку вместе с РД-25 помещен его паспорт, уложенный в полиэтиленовый пакет с застежкой ZIP-LOCK.
- 5.3 Упаковочная коробка промаркирована манипуляционным знаком «Хрупкое. Осторожно».

#### 6 МЕРЫ БЕЗОПАСНОСТИ

- 6.1 РД-25 соответствует требованиям безопасности к электрическим изделиям и обеспечивает защиту человека от поражения электрическим током по классу 0 по ГОСТ 12.2.007.0.
- 6.2 К работе с РД-25 должны допускаться работники из электротехнического персонала, имеющие группу по электробезопасности не ниже III, прошедшие инструктаж по технике безопасности при работе с установками напряжением до 1000 В, ознакомленные с настоящим

Руководством по эксплуатации и эксплуатационной документацией на программы настройки контроллера.

## 7 ПОДКЛЮЧЕНИЕ

#### **7.1 Монтаж**

Монтаж РД-25 производится в электротехнический шкаф на стандартную DIN-рейку шириной 35 мм.

Последовательность монтажа контроллера следующая:

- в соответствии с габаритами РД-25 (см. таблицу 1) осуществляется подготовка посадочного места в шкафу электрооборудования (конструкция шкафа должна обеспечивать защиту контроллера от попадания в него влаги, грязи и посторонних предметов);
  - РД-25 крепится на DIN-рейку.

Экраны кабелей датчиков должны быть соединены с шиной заземления в одной точке со стороны РД-25 как можно ближе к источнику питания. Со стороны датчиков экраны необходимо оставить свободными.

Монтаж, подключение питания и заземления датчиков следует выполнять в соответствии с требованиями и рекомендациями эксплуатационной документации на данные датчики. В состав шкафа вблизи РД-25 и его источника питания должен входить выключатель или автомат защиты, имеющий маркировку как отключающее устройство. Монтаж и демонтаж РД-25 и его внешних цепей следует проводить при отключенном электропитании самого контроллера и всех подключаемых к нему датчиков.

Для монтажа рекомендуется применять экранированный кабель типа МКЭШ по ГОСТ 10348-80 с необходимым числом жил сечением не менее 0,35 мм² (или аналогичный).

#### 7.2 Подключение питания

Электрическое питание контроллера следует осуществлять от источника постоянного тока (далее по тексту – источник питания, ИП), характеристики которого приведены в таблице 1. Питание подключается к клеммам «Uпит–» и «Uпит+» с соблюдением полярности (см. рисунок А.1 в Приложении A).

#### 7.3 Подключение к ПК

Подключить контроллер к ПК можно двумя способами – по интерфейсу USB (рекомендуемый вариант) и по интерфейсу CAN.

Чтобы **подключить РД-25 к ПК через порт mini-USB**, нужно выполнить следующие действия.

- 1. Подать питание на контроллер (см. п. 7.2).
- 2. Подключить РД-25 к ПК с помощью mini-USB-кабеля в соответствии с рисунком 2.

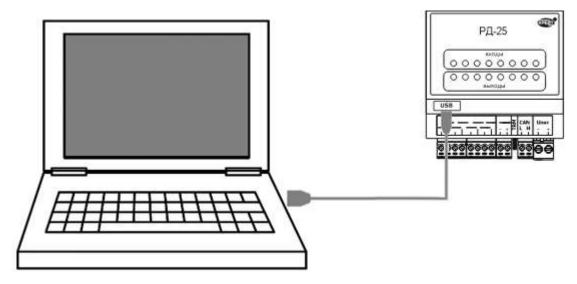



Рисунок 2 – Подключение РД-25 к ПК

3. Проверить появление СОМ-порта в Диспетчере устройств ПК. Для этого зайти в «Проводник», правой кнопкой мыши нажать на «Этот компьютер» и выбрать пункт «Управление» (см. рисунок 3). В открывшемся окне нажать на пункт «Диспетчер устройств», а затем найти в нем пункт «Порты (СОМ и LPT)» и щелкнуть по символу «>» рядом с его названием. В открывшемся списке отобразится СОМ-порт подключенного устройства (см. рисунок 4). Если РД-25 не определился в операционной системе ПК виртуальным СОМ-портом, нужно установить драйверы на ПК и/или заменить кабель (кабели) и повторить подключение.




Рисунок 3 – Пункт «Управление» во вкладке «Этот компьютер»

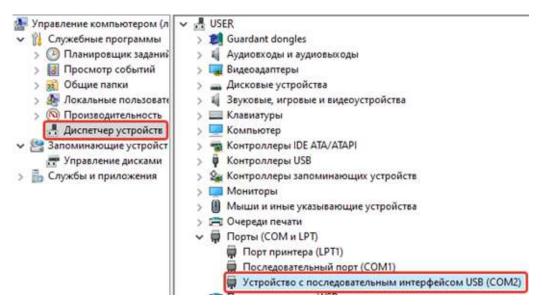



Рисунок 4 – РД-25 в списке СОМ-портов

Чтобы **подключить РД-25 к ПК через интерфейс CAN**, необходимо выполнить следующие действия.

1. Подключить к магистрали CAN-BUS контроллер (см. п. 7.6) и адаптер АИ-200 (схему и методику подключения см. в Руководстве по эксплуатации адаптера АИ-200 Т10.00.200 РЭ), а затем соединить USB-порт АИ-200 и USB-порт ПК стандартным кабелем USB – AB.

Подать питание на контроллер (см. п. 7.2).

#### 7.4 Подключение датчиков к входам

Подключение к входам осуществляется согласно рисунку 5. Входы одной и той же группы должны быть подключены по одинаковой схеме.

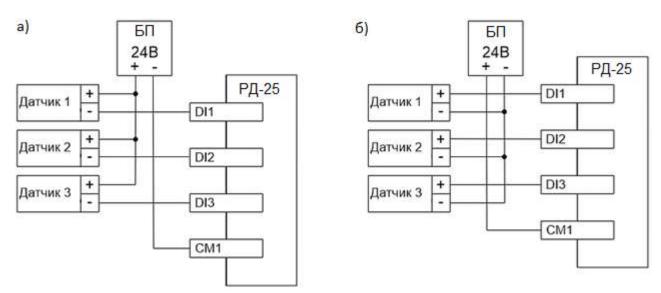



Рисунок 5 – Варианты подключения датчиков к входам DI1...DI8: а) – с общим «плюсом», б) – с общим «минусом»

#### 7.5 Подключение исполнительных механизмов к выходам

Подключение к выходам осуществляется в соответствии с рисунком 6.

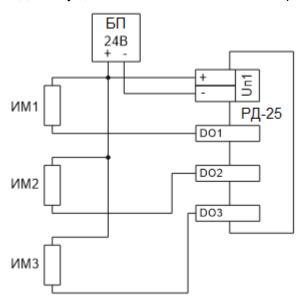



Рисунок 6 – Схема подключения нагрузок к выходам DO1...DO8

## 7.6 Подключение по CAN-шине

Подключение осуществляется соединением контактов «CAN L» и «CAN H» с одноименными шинами магистрали в соответствии с рисунком 7. Заводские параметры связи приведены в таблице 6. Максимальное количество приборов в одном сегменте шины CAN-BUS — 30 шт. Протяженность одного сегмента магистрали CAN-BUS при типе подключения точкаточка не должна превышать 100 метров при скорости 300 кБод. При подключении двух и более сегментов, включающих в себя несколько конечных точек, необходимо использовать разделители сегментов магистрали PC-62 (Т10.00.62), выполняющие согласование физических характеристик линии связи и распределенных нагрузок.

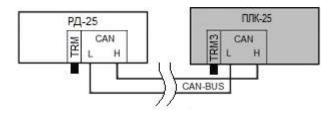



Рисунок 7 – Схема подключения РД-25 к САN-шине

Примечание — На двух контроллерах, находящихся на противоположных концах магистрали, **необходимо** установить перемычку «TRM»; на всех остальных преобразователях, подключенных к этой магистрали, перемычки должны быть удалены. Работа системы обмена данными по магистрали, построенной по топологиям типа «Звезда», «Куст» и др. не гарантируется.

Таблица 6 – Заводские параметры интерфейса CAN-BUS

| Параметр      | Значение   |
|---------------|------------|
| Сетевой номер | 1          |
| Скорость      | 300 кБит/с |

#### 8 ЗАЩИТА ИНФОРМАЦИИ

В РД-25 отсутствует внутренняя защита информации от изменений, поэтому её необходимо обеспечивать внешним решением.

#### 9 РЕЖИМЫ РАБОТЫ

РД-25 может находиться в одном из двух режимов функционирования: **Работа** или **Останов**.

Во время эксплуатации контроллер должен находиться в режиме **Работа**. Переведенный в этот режим РД-25 после подачи на него питания начинает выполнять команды, поступающие от ПЛК-25.

Режим **Останов** является технологическим – используется при настройке РД-25. В нем исполняются все системные функции, но прекращается выполнение команд, поступающих от ПЛК-25.

Режим работы контроллера изменяется с помощью ПО «РОМБ-3» (методики смены приведены в разделе 5.7 Руководства пользователя ПВРТ.ПК.001.РП).

#### 10 ПОДГОТОВКА К ЭКСПЛУАТАЦИИ

Перед вводом РД-25 в эксплуатацию следует:

- 1. Установить перемычки на интерфейс CAN в соответствии со схемой из п. 7.6.
- 2. Соединить РД-25 с ПК с помощью mini-USB-кабеля (см. рисунок 2), подать питание на контроллер (см п. 7.2).
- 3. Запустить «РОМБ-3» на ПК и выполнить запись проекта настроек в контроллер в соответствии с п. 5.6 Руководства пользователя ПВРТ.ПК.001.РП.

## 10.1 Настройка входов

Работа входов настраивается в ПО «РОМБ-3». Для настройки параметра входа необходимо в создаваемом проекте найти блок, соответствующий настраиваемому входу (в примере, приведенном на рисунке 8, это вход **DI1**), выбрать настраиваемый параметр (на рисунке 8 — «Фильтр») и ввести в отведенное поле (в примере на рисунке 8 подсвечено зеленым цветом и обведено в красную рамку) необходимое значение в соответствии с таблицей 7. В ПО «РОМБ-3» можно посмотреть сведения о параметрах, не нуждающихся в настройке — их описание и форматы приведены в таблице 8.

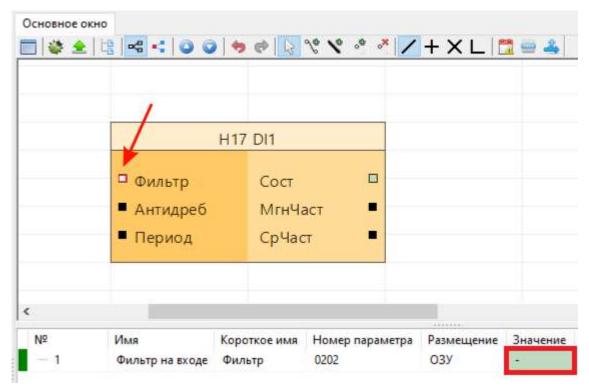



Рисунок 8 – Настройки параметров входа DI1

Таблица 7 – Настраиваемые параметр входов

| Параметр                                                                 | Описание                                                             | Формат* | Значения      |
|--------------------------------------------------------------------------|----------------------------------------------------------------------|---------|---------------|
| Фильтр                                                                   | Фильтр «антидребезга» на входе                                       | BOOL    | 0 – выключен; |
|                                                                          | 1 – включен                                                          |         |               |
| Антидреб                                                                 | Время «антидребезга» на входе, мс (актуально при включенном фильтре) | UINT8   | 0 – 255       |
| Период Период (интервал) усреднения входной частоты, UINT16 0 – 65535 мс |                                                                      |         |               |
| * Подробнее о форматах в п. 5.4 Руководства пользователя ПВРТ.ПК.001.РП  |                                                                      |         |               |

Таблица 8 – Информационные параметры входов

| Параметр                                                                | Описание                                 | Формат* | Значения       |
|-------------------------------------------------------------------------|------------------------------------------|---------|----------------|
| Сост                                                                    | Текущее состояние входа (обновляется при | BOOL    | 0 – неактивен; |
|                                                                         | режиме опроса уровня входного сигнала)   |         | 1 – активен    |
| МгнЧаст                                                                 | Измеренная мгновенная частота, Гц        | FLOAT   | Число          |
| СрЧаст                                                                  | Измеренная средняя частота, Гц           |         | Число          |
| * Подробнее о форматах в п. 5.4 Руководства пользователя ПВРТ.ПК.001.РП |                                          |         |                |

#### 10.2 Настройка выходов

Работа выходов настраивается в ПО «РОМБ-3». Для настройки параметра выхода необходимо в создаваемом проекте найти блок, соответствующий настраиваемому выходу (в примере, приведенном на рисунке 9, это выход **DO 1**), выбрать настраиваемый параметр (на рисунке 9 – «**DO\_mode**») и ввести в отведенное поле (в примере на рисунке 9 подсвечено зеленым цветом и обведено в красную рамку) необходимое значение в соответствии с таблицей 9.

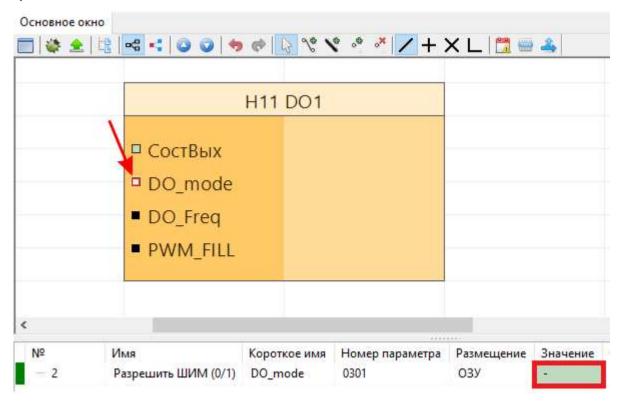



Рисунок 9 – Настройки параметров выхода DO1

Таблица 9 – Настраиваемые параметры выходов

| Параметр                                                                | Описание                                                       | Формат* | Значения                                                                                              |
|-------------------------------------------------------------------------|----------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------|
| DO_mode                                                                 | Включение ШИМ на данном канале                                 | BOOL    | 0 — ШИМ выключен (выход работает в режиме ключа); 1 — ШИМ включен (выход работает в частотном режиме) |
|                                                                         | Заданная частота ШИМ, Гц (актуально при частотном режиме)      | FLOAT   | 1.0 — 10000.0                                                                                         |
| PWM_FILL                                                                | Коэффициент заполнения ШИМ (актуально при частотном режиме), % | FLOAT   | 0.0 – 100.0                                                                                           |
| * Подробнее о форматах в п. 5.4 Руководства пользователя ПВРТ.ПК.001.РП |                                                                |         |                                                                                                       |

Изменение параметра **СостВых** (в меню контроллера – **Состояние**), характеризующего состояние выхода, доступно только в режиме Отладка РД-25 при работе выхода в режиме ключа (о режимах работы см. в разделе 9). Параметр может принимать значение 0 (сигнал отсутствует) или 1 (сигнал есть).

## 10.3 Настройка CAN

Работа САN-интерфейса настраивается в ПО «РОМБ-3». Для настройки САN-параметра необходимо в создаваемом проекте найти соответствующий блок (см. рисунок 10), выбрать настраиваемый параметр (на рисунке 10 – «**CAN-ID**») и ввести в отведенное поле (в примере на рисунке 10 подсвечено зеленым цветом и обведено в красную рамку) необходимое значение в соответствии с таблицей 10.

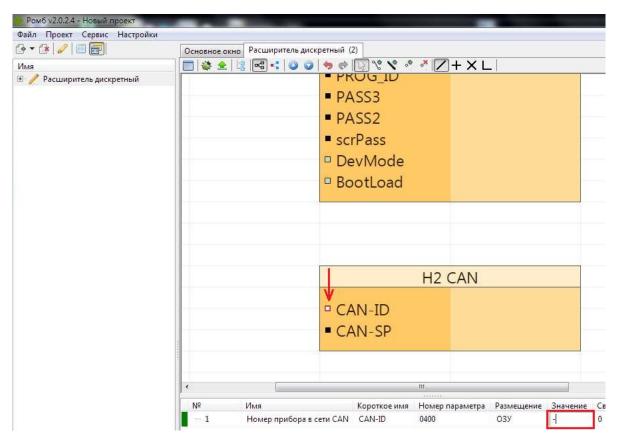



Рисунок 10 – Настраиваемые параметры САN-интерфейса

Таблица 10 – Настраиваемые параметры интерфейса CAN

| Параметр                                                                | Описание                   | Формат* | Значения                                 |
|-------------------------------------------------------------------------|----------------------------|---------|------------------------------------------|
| CAN-ID                                                                  | Заданный сетевой номер     | UINT8   | 0 – 255                                  |
|                                                                         | прибора на CAN-шине        |         |                                          |
| CAN-SP                                                                  | Заданная скорость обмена в | UINT16  | 20, 50, 100, 150, 250, 300, 500 или 1000 |
|                                                                         | сети CAN, кБит/с           |         |                                          |
| * Подробнее о форматах в п. 5.4 Руководства пользователя ПВРТ.ПК.001.РП |                            |         |                                          |

#### 11 ЭКСПЛУАТАЦИЯ

#### 11.1 Ввод в эксплуатацию

Для ввода РД-25 в эксплуатацию необходимо перевести контроллер в режим Работа (см. раздел 9).

#### 11.2 Индикация

На лицевой панели РД-25 расположены светодиодные индикаторы состояния его входов и выходов. Светодиоды состояния входов сгруппированы в блок «входы», а светодиоды состояния выходов – в блок «выходы», размещенный под блоком «входы».

Каждый из светодиодов соответствует одному входу/выходу и индицирует его текущее состояние.

При наличии логической единицы на дискретном входе (DI) соответствующий светодиод включен, при ее отсутствии – выключен. В случае измерения входом частоты светодиод включен при ее наличии и выключен при отсутствии частоты на входе.

Светодиод блока «выходы» включен при нахождении соответствующего выхода (DO) в состоянии логической единицы и выключен – в состоянии логического нуля. При работе выхода в режиме генерации ШИМ светодиод включен.

#### 12 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 12.1 При выполнении работ по техническому обслуживанию контроллера следует соблюдать меры безопасности, изложенные в разделе 6.
- 12.2 Технический осмотр контроллера проводится обслуживающим персоналом не реже одного раза в год и включает в себя выполнение следующих операций:
- очистку корпуса и клеммных колодок контроллера от пыли, грязи и посторонних предметов;
  - проверку качества крепления контроллера на DIN-рейке;
- проверку состояния клеммных соединений (выполнение протяжки при необходимости).

#### 13 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

- 13.1 Транспортирование упакованного РД-25 должно производиться в крытых транспортных средствах всеми видами транспорта, авиатранспортом только в герметизированных и отапливаемых отсеках в соответствии с ГОСТ Р 52931.
- 13.2 Хранение РД-25 должно производиться в соответствии с условиями хранения Л по ГОСТ 15150.

## 14 ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

- 14.1 Изготовитель гарантирует соответствие РД-25 требованиям технических условий ПВРТ.421242.001 ТУ при условии соблюдения потребителем режимов работы, правил эксплуатации, транспортирования и хранения, изложенных в настоящем руководстве.
  - 14.2 Гарантийный срок хранения 6 месяцев с даты изготовления.
- 14.3 Гарантийный срок эксплуатации 18 месяцев со дня ввода РД-25 в эксплуатацию, но не более 24 месяцев со дня изготовления.

## 15 УТИЛИЗАЦИЯ

- 15.1 Контроллер не содержит драгоценных металлов и материалов, представляющих опасность для жизни.
- 15.2 Утилизация РД-25 производится с разделением по группам материалов: пласт-массовые элементы, металлические крепежные элементы.

## Приложение А

## Внешний вид РД-25

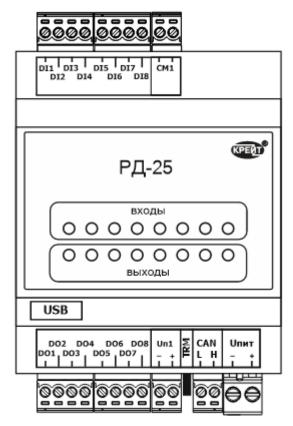



Рисунок А.1 – РД-25, вид спереди

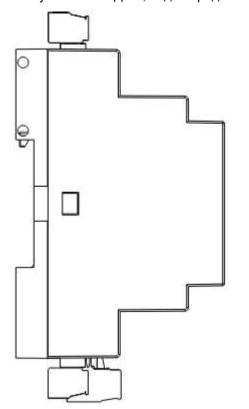



Рисунок А.2 – РД-25, вид сбоку

# Приложение Б

# Назначение контактов РД-25

Таблица Б.1 – Назначение контактов

| Наименование | Назначение                                                 |
|--------------|------------------------------------------------------------|
| DI1-DI8      | Дискретные входы                                           |
| CM1          | Общий контакт дискретных входов                            |
| DO1-DO8      | Дискретные выходы                                          |
| Uп1          | Клеммы подключения питания дискретных выходов              |
| TRM          | Джампер подключения терминального резистора CAN-интерфейса |
| CAN          | Клеммы подключения САN-интерфейса                          |
| Uпит         | Клеммы подключения питания контроллера                     |

# Приложение В

# Гальваническая развязка в РД-25

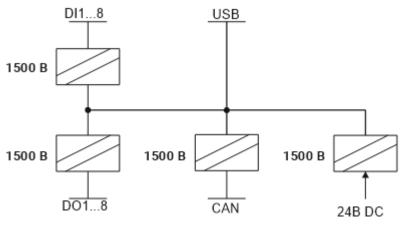



Рисунок В.1 – Схема гальванической развязки в РД-25