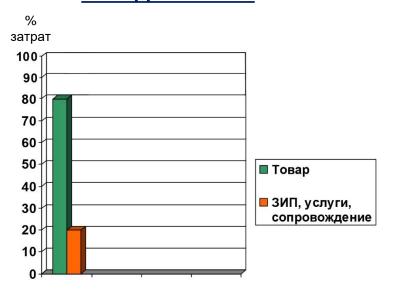


Доклад по QR-коду на сайте kreit.ru

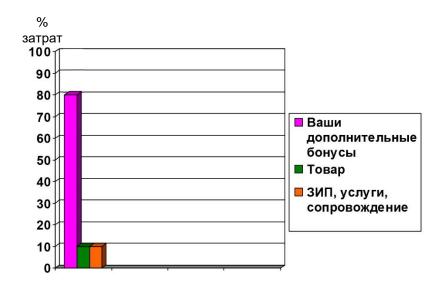
KPENI


«Оборудование и технологии «КРЕЙТ» для автоматизации и учёта»

Пирогов Александр Петрович, тех. директор

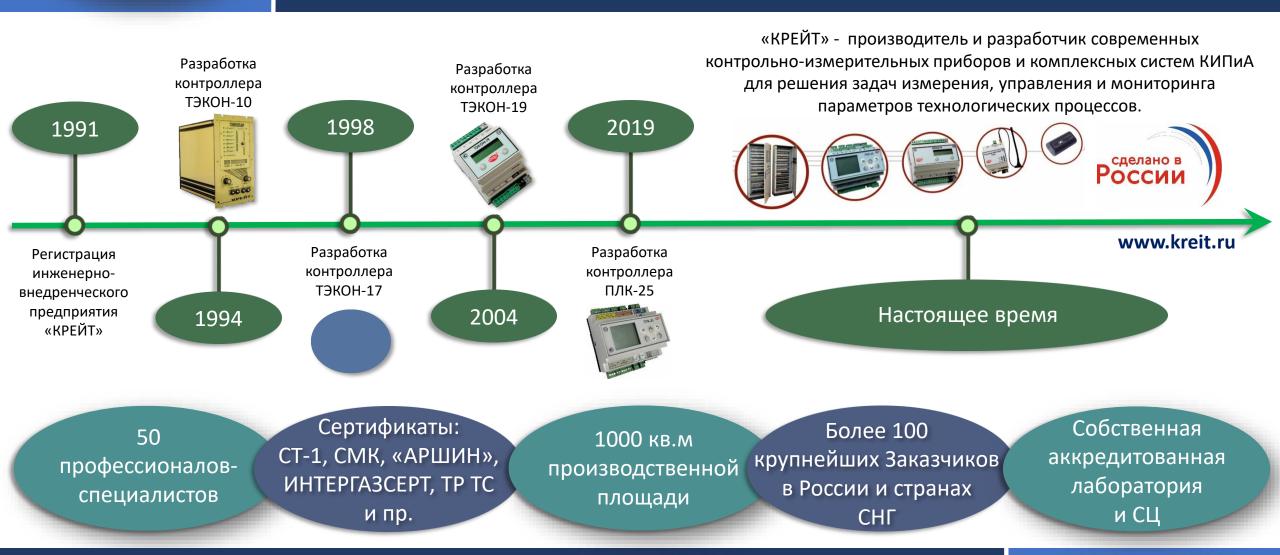
Предложения «КРЕЙТ»

После Второй мировой войны Запад жил так:



<u>Сегодня</u> так:

ООО «Крейт» предлагает:


- Независимость от производителя;
- Самостоятельность развития;
- Востребованность собственных кадров.

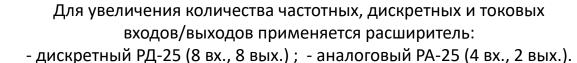
История предприятия

География «КРЕЙТ»

Партнёры «КРЕЙТ»

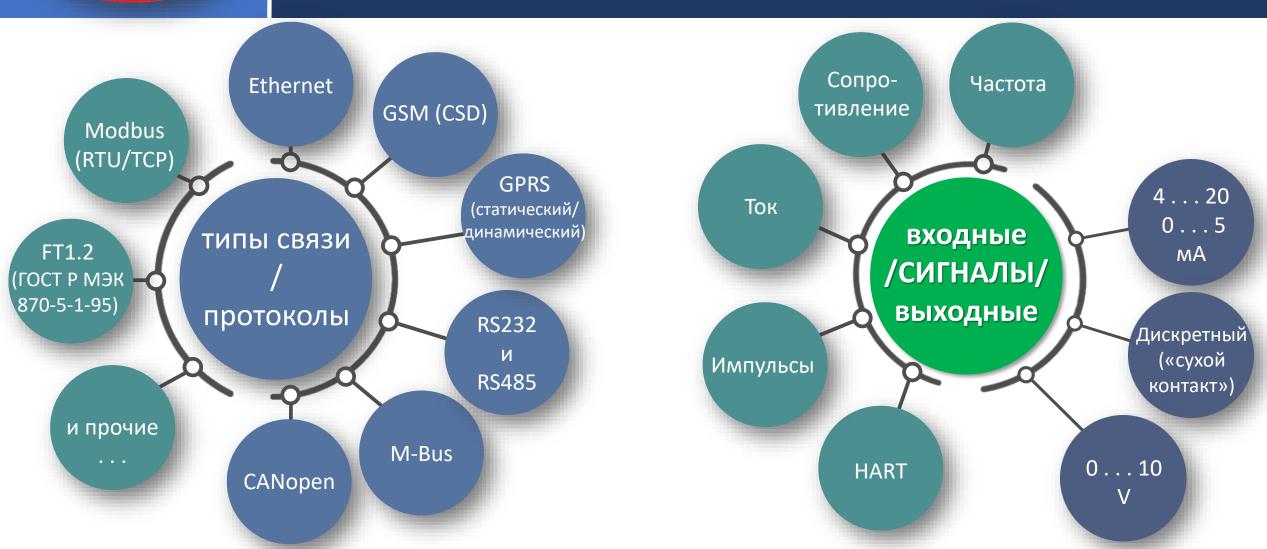
и многие другие...

УЧЁТ АВТОМАТИЗАЦИЯ И


Измерения и учёт

- набор типовых схем
- аттестованные СИ
- измерительные комплексы для различных (в т.ч. взрывоопасных) сред

- повысительные насосные станции
- **FPC/AFHKC**
- одоризация
- приточная вентиляция
- тепловые пункты
- и т. д.

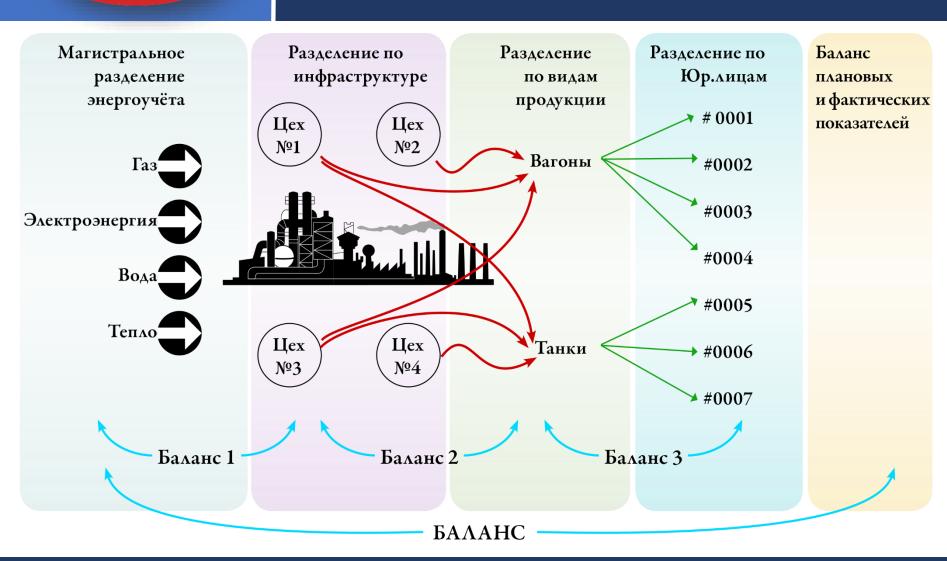


Применение

Связь, протоколы, сигналы

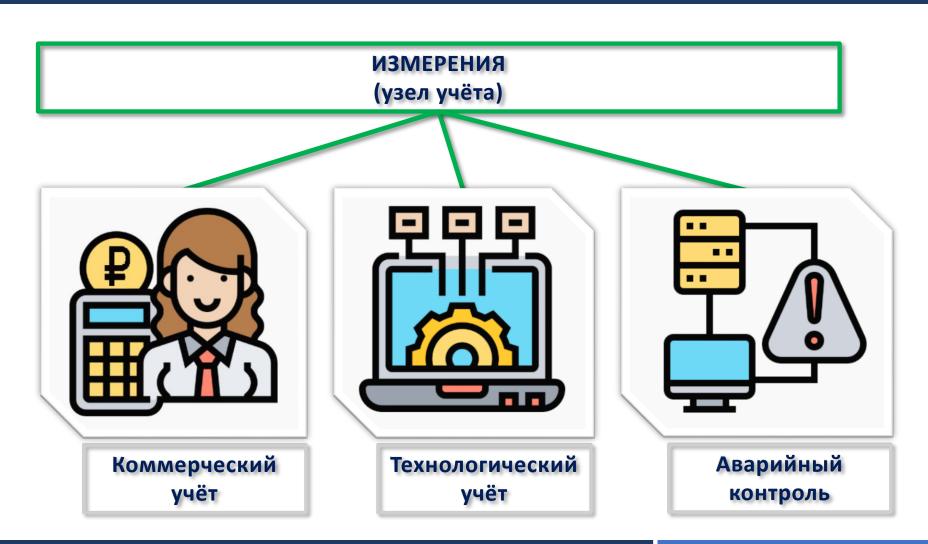
Методы измерений

- Диафрагма;
- **>** Сопло ИСА 1932;
- Трубка ANNUBAR 485;
- > Трубка TORBAR;
- Ультразвуковой расходомер;
- Вихревой расходомер;
- Электромагнитный расходомер;
- Вихреакустический расходомер;
- Камерный расходомер;
- Кориолисовый расходомер.


Направления

Построение балансов

Структура предприятия:


- схема энергоснабжения и технологии подключения;
- выделение пределов работ;
- юридические лица (холдинг).

Баланс на источниках

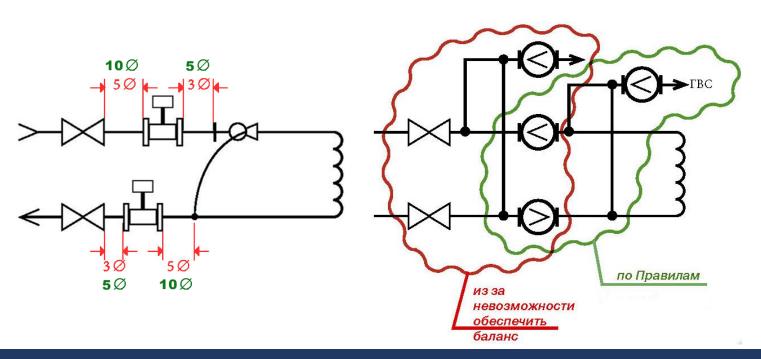
Выбор принципа измерений в системах теплоснабжения

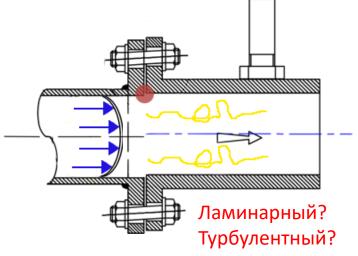
Принцип измерения	электро- магнитный	ультразвук	механический	вихре- акустический	
Фактор влияния на измерение скорости	шунтирование сенсоров			!!!	
Причина	изменение скорость ЭДС ультразвука		вращение	тело обтекания	
Как отражается на измерении	снижение	хаотически	выход из строя	стабильность	

Ключевые элементы баланса - это расходомеры,

на качество измерений (достоверность) которых влияют характеристики:

- Стабильность на межповерочном интервале;
- ▶ Двухзнаковость погрешности «+» и «-»;
- Динамический диапазон (кратность);
- Дополнительная погрешность;
- Соответствие расстояний до местных сопротивлений согласно ГОСТ 8.586-2005;
- > Возможность несанкционированно менять метрологические характеристики;
- Цена владения (затраты на эксплуатацию).



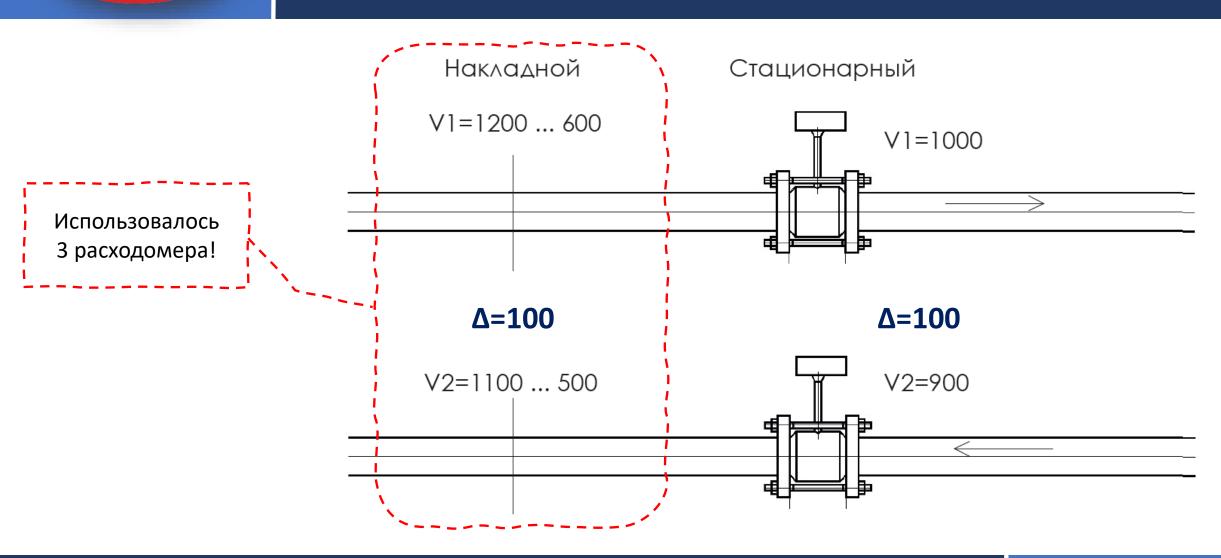

Ключевые ошибки при проектировании и монтаже

- Несоблюдение прямых участков;
- Несоответствие схемам Правил учета тепловой энергии, теплоносителя 2013г;
- Применение расходомеров на гладких фланцах;
- Неправильно выбранный принцип измерения.

Правила учёта тепловой энергии

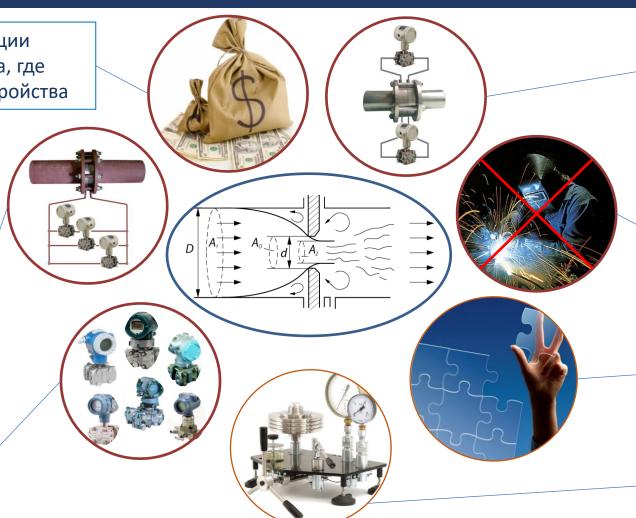
Название	1995 год	2013 год			
Пазвание	δ (относительная погрешность)	(для закрытой схемы)		(для открытой схемы)	
		δ (относительная погрешность)			
	+- 2%	класс 1 «источник»	класс 2 «потребитель»	класс 1 «источник»	класс 2 «потребитель»
Расходомеры (вода)	<u> 276</u>	+-3,5%	<u>+-5%</u>	+-3,5%	<u>+-5%</u>
Теплосчетчик:		Y max	Y max	Не регламе	ентируется
(при dt от 3 до 10 C)		+-8,5%	<u>+-10%</u>	правилами! (Определяется методиками измерений, указанных в описании типа этих средств измерений)	
(при dt от 10 до 20 C)	<u>+- 5%</u>	+-5,7	+-7,2%		
(при dt более 20 C) «вода 130/70»	+-4%	+-5,1%	+-6,6%		
Давление (вода)	+-2%	Ƴ (приведенная погрешность) «по правилам 2013г.»	δ (относительная погрешность) «перерасчет»		
100% (диапазон датчика)	7-2 /0	+-2%	+-2%		
70% (диапазон датчика		270	+-3%		

Приказ Минэнерго России от 15.03.2016 №179 "Об утверждении перечня измерений, относящихся к сфере государственного регулирования обеспечения единства измерений, выполняемых при учете используемых энергетических ресурсов...


Изменение объема природного газа,приведенного к стандартным условиям при добыче, переработке, транспортировке, хранении, распределении и потреблении

10⁵м³/ч и более	+-1,5%
с 2*10⁴до 10⁵м³/ч	+-2,0%
с 10³до 2*10⁴м³/ч	+-2,5%
менее 10 ³ м ³ /ч	+-4,0%

Применение накладных расходомеров



Метод переменного перепада давления

Низкая цена модернизации существующих узлов учета, где используются сужающие устройства

Для расширения диапазона (с минимизацией погрешности) возможна установка 3 датчиков

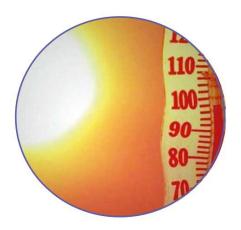
Нет привязки к конкретному производителю (цена, качество, и т.д.)

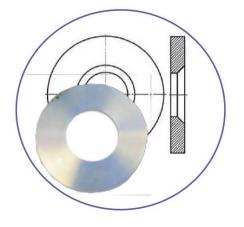
Используя одну шайбу, можно подключить два параллельных комплекта

При изменении режимов возможна модернизация без огневых работ и крупных капиталовложений

Прозрачен и легко поверяем поэлементно

Низкие финансовые затраты на вторичную поверку


Метод переменного перепада давления


Высокие метрологические характеристики (погрешность до 0,7% на весь комплект)

Признанная и подтвержденная многолетним применением нормативная база (ГОСТ 8.856-2005, ГОСТ 8.899-2015)

Может работать в любых критических и агрессивных средах и условиях

СУ не является средством измерения.

Сравнение

Измерительные комплексы «КРЕЙТ» - ТЭКОН-20К, 20ГК

Низкая стоимость расходомера Разумные расходы на ремонт и поверку

Многолетний опыт эксплуатации, заработанное доверие

Прозрачен и легко проверяем поэлементно

Измерительные комплексы западных производителей и их «клонов» на территории России

Высокая стоимость расходомера

> 2 млн.р.

Расходы на ремонт и поверку сопоставимы со стоимостью нового оборудования

Редкое явление Сложность в проверке



Измерительные комплексы природного газа ТЭКОН-20ГК

Пределы допускаемой основной относительной погрешности комплекса при измерении расхода и объема

Уровень точности измерений				
А	Б	В		
± 0,3%	± 0,5%	± 0,7%		

устанавливается в

взрывоопасной зоне «1Ex d [ib] IIB ТЗ»

- Предназначен для измерений расхода и объема природного газа с помощью сужающих устройств;
- Эксплуатация во взрывоопасной зоне;
- Поверка проводится непосредственно на месте эксплуатации во взрывоопасной зоне без демонтажа оборудования;
- Градуировка на месте эксплуатации;
- Простота монтажа с использованием существующей инфраструктуры без «огневых работ»;
- Возможность интеграции в любые системы телемеханики (Магистраль-1, Магистраль-2, КТС- Энергия и др.);

Создание комплексов автоматизации из однотипных «кирпичиков»

Собственная среда разработки прикладных программ контроллера

- FBD.
- набор базовых алгоритмов.
- режим аппаратно-программной отладки.

- + Гибкость компоновки.
- + Простота модернизации.
- + Широкое разнообразие решений и технологий без изменения существующей РСУ.

Создание комплексов автоматизации из однотипных «кирпичиков»

Библиотека прикладных программ

- погодное регулирование.
- вентиляция.
- насосная станция.
- повысительная насосная станция.
- FPC / AFHKC.
- и т.д., до бесконечности.
- + Техническая доступность.
- + Независимость от приобретённых решений АСУТП.
- + Удобная эксплуатация.

Создание комплексов автоматизации из однотипных «кирпичиков»

В решениях «КРЕЙТ» для АСУ ТП отсутствуют уязвимости:

- удаленного перехвата контроля над инфраструктурой;
- возможности технического изменения информации;
- атак как «снизу-вверх», так и «сверху-вниз».

- + Быстрая интеграция, решение связанных проблем.
- + Сокращение совокупной стоимости владения АСУТП.
- + Получение дополнительного экономического эффекта от оптимизации АСУТП.
- + Значительно меньшие затраты для интеграторов.

Модернизация действующих шкафов автоматики (АСУТП)

«КРЕЙТ» предлагает модернизацию шкафов автоматики (в т.ч. в сфере ЖКХ) путём замены устаревшего, вышедшего из строя, а также подсанкционного оборудования, с минимальными изменениями в проекте, с привязкой к существующим исполнительным механизмам и сигнальным цепям.

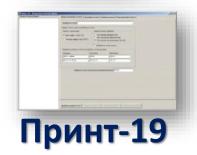
До модернизации:

После модернизации:

Модернизация позволяет безболезненно перейти на отечественную автоматику с сохранением действующего первичного оборудования.

Пример вынужденной модернизации:

* по Правилам, на восстановление работоспособности — 1 час



Диспетчерское программное обеспечение:

Бесплатное программное обеспечение:

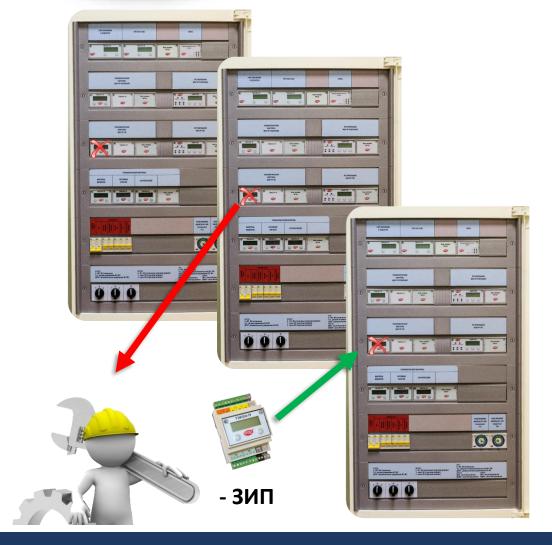
Позволяет составить произвольную отчётную форму для отображения архивных данных приборов ТЭКОН-19.

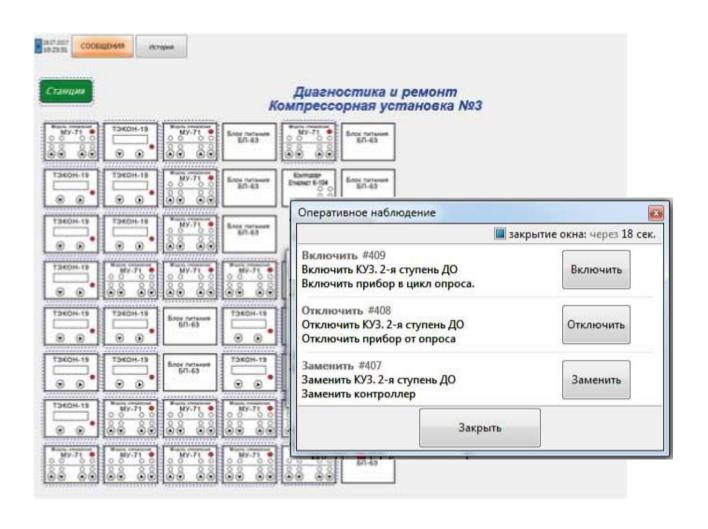
Предоставляет полный и удобный инструментарий для настройки устройств серии ТЭКОН-20.

Набор готовых решений для различных схем и сред измерений.

Сервисное программное обеспечение

При отсутствии готового решения в библиотеке, позволяет создать новую (в т.ч. уникальную) очередь задач.




Интегрированная среда разработки (IDE) приложений для программируемых контроллеров "КРЕЙТ". Поддерживает FBD. Включает в себя редактор визуализации и средства отладки.

*Полный перечень СПО на https://kreit.ru/service/service.html

Ремонт системы не требует навыков программирования и занимает 5-20 мин

Сопротивление при 0 гр,(R0 Ом) 199,00 Характеристика термометра

Температура, град С

Признак обрыва

Телепорт М

Программно-аппаратный комплекс «Телепорт М»

«Телепорт М» позволяет подключаться к контроллерам серии ТЭКОН-19 по беспроводной сети Wi-Fi, считывать очередь задач, менять конфигурацию контроллера, проводить диагностику узлов учёта.

В состав комплекса входит программное обеспечение для смартфонов на базе

Android и беспроводной адаптер связи «БАС-25».

Тип модуля

Ввод физико-химических показателей

Метрологическое оборудование

Спасибо за внимание!

www.kreit.ru

Доклад по QR-коду на сайте kreit.ru в разделе «новости». Электронный каталог

Контактная информация

Пирогов Александр Петрович, тех. директор

г. Екатеринбург,

тел.: 8 (343) 216-51-10,

e-mail: info@kreit.ru