УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «22» марта 2024 г. № 792

Лист № 1 Всего листов 10

Регистрационный № 35615-14

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Комплексы учета энергоносителей ТЭКОН-20К

Назначение средства измерений

Комплексы учета энергоносителей ТЭКОН-20К (далее – комплексы) предназначены для измерений расхода, давления, температуры, массы и объема жидкостей, пара, газов и газовых смесей (среды), измерений тепловой энергии в закрытых и открытых системах теплоснабжения, системах охлаждения и в отдельных трубопроводах при определении расхода с помощью сужающих устройств (СУ) – диафрагм и сопел ИСА 1932, специальных сужающих устройств (ССУ) по РД 50-411-83, осредняющих напорных трубок TORBAR и ANNUBAR 485 или расходомерами с унифицированными токовыми, импульсными, частотными и цифровыми интерфейсными выходами, контроля измеряемых параметров среды, а также для измерений электрической энергии, в том числе по двухтарифной схеме.

Описание средства измерений

Принцип действия комплексов основан на измерении расхода, давления, температуры, массы и объема среды в рабочих и стандартных условиях, тепловой и электрической энергии измерительными каналами (ИК) с отображением результатов измерений на дисплее и передачей их на персональный компьютер (ПК) по цифровым каналам связи.

Комплексы выпускаются:

- в 5 исполнениях для газов и газовых смесей (A, Б, B, Γ_1 , Γ_2),
- в 3 исполнениях для измерения тепловой энергии в закрытых водяных системах теплоснабжения (класс 1, 2, 3),

различающихся уровнем точности измерений и не различаются по исполнениям для других энергоносителей.

Комплексы состоят из следующих компонентов (средств измерений (СИ) утвержденных типов, зарегистрированных в Госреестре СИ):

- преобразователей расчетно-измерительных ТЭКОН-19, ТЭКОН-19Б;
- измерительных преобразователей (ИП) расхода с токовым, частотным, импульсным или цифровым интерфейсным выходом, имеющих пределы допускаемой относительной погрешности при измерении расхода жидкости в интервале ± 2.0 %; при измерении расхода пара в интервале ± 2.5 %; при измерении расхода газа и газовых смесей в соответствии с таблицей 1;
- счетчиков электрической энергии с импульсным или цифровым интерфейсным выходом, имеющих пределы допускаемой относительной погрешности в интервале $\pm 2.0 \%$;

- измерительных преобразователей абсолютного и избыточного давления с унифицированным токовым или цифровым интерфейсным выходом, имеющих класс точности не ниже 0,5;
- измерительных преобразователей разности давления с унифицированным токовым или цифровым интерфейсным выходом, имеющих класс точности не ниже 0,5;
- измерительных преобразователей температуры класса С и выше (в соответствии с ГОСТ 6651-2009), в том числе, с унифицированным токовым или цифровым интерфейсным выходом;
- барьеров искрозащиты, имеющих пределы допускаемой относительной (приведенной) погрешности в интервале \pm 0,1 %.

В качестве ИП могут использоваться многофункциональные (многопараметрические) ИП с вышеперечисленными измеряемыми величинами и характеристиками точности.

Комплексы каждого исполнения выпускается в двух вариантах — основном и «Т», различающимися вариантом исполнения преобразователей расчетно-измерительных по условиям эксплуатации (основном или «Т» соответственно).

Комплексы имеют ИК массы, объема (расхода) – до 64 шт.; ИК давления – до 64 шт.; ИК разности давления – до 64 шт.; ИК температуры – до 64 шт.; ИК электрической энергии – до 64 шт.; ИК тепловой энергии – до 64 шт.

В ИК расхода, массы и объема используются расходомеры объемного расхода с унифицированными выходными сигналами, в том числе турбинные, ротационные или вихревые расходомеры или счетчики в соответствии с ГОСТ Р 8.740-2011, счетчики диафрагменные в соответствии с ГОСТ Р 8.915-2016, ультразвуковые преобразователи расхода газа в соответствии с ГОСТ 8.611-2013, МИ 3213-2009, электромагнитные расходомеры, диафрагмы и сопла ИСА 1932 в соответствии с ГОСТ 8.586.5-2005, специальные сужающие устройства в соответствии с РД 50-411-83 или осредняющие напорные трубки TORBAR и ANNUBAR 485 в соответствии с МИ 3173-2008, МИ 2667-2011, а так же кориолисовые расходомеры.

T (- 1	. т	· c		TITI	TITC			_			U
lar	тинта І	I F	(HACCLI	TOULOCTIA	1/11/1) I/I K	nacyona	Maccell I	I OOLEMA	Labor .	и газовых	СМЕСЕИ
1 40	лица 1		Chacebi	TOTHOCIM	KILL I	2111	раслода,	Maccbi M	i OOBCMa	Tasob .	n i asobbia	CIVICCCYI

Наименование	Диапазон измерений		ние хара			
характеристики	ИП	точности измерений, не н				же
		A	Б	В	Γ_1	Γ_2
Класс ИП температуры по	от –73,15 до +226 °C	A	A	A	В	В
ГОСТ 6651-2009	от –64 до +226 °C	A	A	В	В	С
	от –50 до +151,85 °C	A	В	В	С	С
Класс точности ИП давления	от 30 до 100 %	0,075	0,075	0,15	0,25	0,5
при температуре окружаю-	от 50 до 100 %	0,075	0,15	0,25	0,5	0,5
щего воздуха (20±10) °С	от 70 до 100 %	0,15	0,25	0,5	0,5	0,5
Класс точности ИП разности	от 15 до 100 %	0,05	0,075	0,075	0,15	0,15
давления при температуре	от 20 до 100 %	0,075	0,075	0,15	0,25	0,25
окружающего воздуха	от 30 до 100 %	0,15	0,15	0,25	0,5	0,5
(20±10) °C						
Класс точности ИП давления	от 70 до $100~\%$	0,05	0,075	0,075	0,25	0,5
при условиях эксплуатации в						
соответствии с описанием						
типа на ИП						
Класс точности ИП разности	от 30 до 100 %	0,05	0,05	0,075	0,25	0,25
давления при условиях	от 70 до 100 %	0,075	0,075	0,25	0,5	0,5
эксплуатации в соответствии	01 /0 до 100 //	0,073	0,073	0,23	0,5	0,5
с описанием типа на ИП						
Пределы допускаемой отно-	от 5 до 100 %	$\pm 0,5$	$\pm 0,75$	\pm 1,0	$\pm 2,0$	$\pm 1,5$
сительной погрешности ИП						
расхода, %						

ИК расхода и массы воды, нефти и нефтепродуктов осуществляют измерения в соответствии с МИ 2412-97, Р 50.2.076-2010, ГОСТ 8.587-2019.

ИК расхода, массы и объема газов и газовых смесей, в том числе природного и влажного нефтяного газа, кислорода, диоксида углерода, азота, аргона, водорода, ацетилена, аммиака в рабочих условиях, а также приведённых к стандартным условиям, осуществляют измерения в соответствии с ГОСТ 30319.1-3-2015, ГОСТ Р 8.733-2011, ГСССД МР 113-03, ГСССД МР 118-05, ГСССД МР 134-07, ГСССД 8-79, ГСССД 109-87.

В ИК температуры, давления, расхода, массы и объема газов и газовых смесей используются ИП расхода, температуры, давления и разности давлений в соответствии с таблицей 1 в зависимости от уровня точности и диапазонов измерений и преобразователи расчетно-измерительные ТЭКОН-19, ТЭКОН-19Б с программным обеспечением в соответствии с таблицей 2.

ИК тепловой энергии осуществляют измерения в соответствии «Правилами коммерческого учета тепловой энергии, теплоносителя», утвержденными постановлением правительства РФ Neq 1034 от 18.11.2013.

В ИК тепловой энергии используются ИП, соответствующие обязательным требованиям нормативных документов (НД), предъявляемым к теплосчетчикам и их составным частям.

В ИК давления, массы воды и тепловой энергии водяных систем теплоснабжения используются ИП температуры не ниже класса В (в соответствии с ГОСТ 6651-2009), в том числе, с унифицированным токовым или цифровым интерфейсным выходом, ИП разности давления класса точности не ниже 0,25 при измерении с помощью СУ или ИП объемного расхода, имеющие пределы допускаемой относительной погрешности (от $\pm 0,5$ до $\pm 2,0$) % в диапазоне расхода (от 4 до 100) % верхнего предела измерений ИП.

В ИК давления, массы пара и тепловой энергии паровых систем теплоснабжения используются ИП температуры не ниже класса А (в соответствии с ГОСТ 6651-2009), в том числе, с унифицированным токовым или цифровым интерфейсным выходом, ИП давления и разности давления класса точности не ниже 0,25.

Комплексы обеспечивают обмен данными с ПК для конфигурирования, ввода в ручном и автоматическом режимах значений условно-постоянных параметров газа (полный и неполный компонентный состав, плотность при стандартных условиях, атмосферное давление) и передачи данных об измеренных значениях по цифровым интерфейсам RS485, RS-232, Ethernet, GSM/GPRS через интерфейс CAN-BUS, соответствующие адаптеры, выпускаемые предприятием-изготовителем, и коммуникационное оборудование информационных каналов связи.

Во время работы комплексы проводят измерение текущего времени, времени исправной и неисправной работы, суммирование нарастающим итогом тепловой энергии, массы и объема среды, а также рассчитывают средние по времени и средневзвешенные по расходу значения температуры и давления среды в трубопроводе и хранят их в виде интервальных, почасовых, суточных и месячных архивов.

Конструкцией комплексов не предусмотрена возможность пломбировки и нанесения знака поверки. Заводской номер заносится в руководство по эксплуатации и имеет числовой формат.

Общий вид комплексов представлен на рисунке 1.

место нанесения знака утверждения типа

Рисунок 1 – Общий вид комплексов

Программное обеспечение

В комплексах используется программное обеспечение преобразователей расчетно-измерительных ТЭКОН-19, ТЭКОН-19Б, состоящее из метрологически значимой и метрологически не значимой частей. Идентификационные данные метрологически значимой части программного обеспечения приведены в таблице 2.

Доступ к изменению параметров и конфигурации комплексов защищен паролями, являющимися 8-разрядными шестнадцатеричными числами.

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений — «высокий» по Р 50.2.077-2014.

Программное обеспечение соответствует требованиям ГОСТ Р 8.654-2015.

Таблица 2 – Идентификационные данные программного обеспечения

Идентификационные данные	Значение					
Идентификационное	ТЭКОН19-М1	ТЭКОН19-М1	ТЭКОН19-М2	ТЭКОН19-М2		
наименование ПО	T10.06.292-05	T10.06.292-06	T10.06.362-05	T10.06.362-06		
Номер версии (идентификацион-	05.xx	06.xx	05.xx	06.xx		
ный номер) ПО						

Продолжение таблицы 2

Идентификационные данные	Значение					
Идентификационное	ТЭКОН19-11	ТЭКОН-19Б-01	ТЭКОН-19Б-02			
наименование ПО	T10.06.170	T10.06.204	T10.06.225			
Номер версии (идентификацион-	xx.03	02.xx	02.xx			
ный номер) ПО						

Метрологические и технические характеристики

Таблица 3 – Диапазоны измерений

Среда	Диапазоны измерений					
(жидкость, пар, газ)	Температура,°С	Давление,	Разность	Расход, м ³ /ч		
		МПа	давлений	Масса, кг;		
		(абсолютное)	на СУ, ССУ	Объем, м ³		
			кПа			
Вода	от 0 до 200	от 0,1 до 6,0	от 0,01 до 5000			
Пар	от 100 до 600	от 0,1 до 30,0	от 0,01 до 5000			
Природный газ	от -23,15 до +76,85	от 0,1 до 30,0	от 0,01 до 3000			
Нефтяной газ	от -10 до +226	от 0,1 до 15,0	от 0,01 до 3000			
Воздух	от -50 до +120	от 0,1 до 20,0	от 0,01 до 5000	2		
Кислород, азот, аргон, водо-	от -73,15 до +151,85	от 0,1 до 10,0	от 0,01 до 2500	от 10-3		
род, аммиак	01 -73,13 до +131,03	01 0,1 до 10,0	01 0,01 до 2500	до 10 ⁶		
Диоксид углерода, ацетилен	от -53,15 до +151,85	от 0,1 до 10,0	от 0,01 до 2500]		
Смесь газов	от -73,15 до +126,85	от 0,1 до 10,0	от 0,01 до 2500]		
Нефть и нефтепродукты	от -50 до +100	от 0,1 до 10,0	_			

Таблица 4 – Метрологические характеристики

Пределы допускаемой погрешности (абсолютной (Δ), приведенной (γ), относитель-	Значение
ной погрешности (δ))	
ИК температуры жидкостей и пара (Δ_t), °С	$\pm (0.6+0.004 \cdot t)$
ИК давления (γ_P) и разности давления ($\gamma_{\Delta P}$) жидкостей от верхнего предела ИК, %	± 2
ИК давления (γ_P) и разности давления ($\gamma_{\Delta P}$) пара от верхнего предела ИК, %	± 1
ИК массового и объемного расхода жидкости в диапазоне от 4 % до 100 % верх-	± 2
него предела ИК расхода (бик), %	
ИК массового расхода пара в диапазоне от 10 % до 100 % верхнего предела ИК	± 3
расхода (бик), %	
ИК тепловой энергии открытых водяных систем теплоснабжения при измерении	
расхода в подающем и обратном трубопроводах (бик), %:	
- при отношении $m_{oбp}/m_{noд} \le 0,5$, в диапазоне Δt от 3 до 20 включ. °С	
- при отношении $m_{oбp}/m_{под} \le 0.95$, в диапазоне Δt св. 20 до 200 °C,	± 5
где $m_{\text{под}}$ и $m_{\text{обр}}$ — масса воды в подающем и обратном трубопроводах.	± 4
ИК тепловой энергии в отдельных трубопроводах воды ($\delta_{\text{ИК}}$), %	± 3
ИК тепловой энергии закрытых водяных систем, а также открытых водяных си-	
стем теплоснабжения ($\delta_{\text{ИК}}$), %, при измерении расхода в подающем (или обрат-	

Пределы допускаемой погрешности (абсолютной (Δ), приведенной (γ), относитель-	Значение
ной погрешности (δ))	
ном) трубопроводе и в трубопроводе ГВС (подпитки) при разности температур в	
обратном трубопроводе ($t_{\text{обр}}$) и трубопроводе подпитки (t_{xu}) ≥ 1 °C, и	
разности температур (Δt) в подающем и обратном трубопроводах в диапазоне (от	
3 до 200) °C, где Q _{min} и Q _{max} –пределы диапазона измерений расхода в подающем	
трубопроводе.	
1 класса	$\pm (2+12/\Delta t +$
	$0.01 \cdot Q_{\text{max}}/Q_{\text{min}}$
2 класса	$\pm (3+12/\Delta t +$
	$0.02 \cdot Q_{\text{max}}/Q_{\text{min}}$
3 класса	$\pm (4+12/\Delta t +$
	$0.05 \cdot Q_{\text{max}}/Q_{\text{min}}$
ИК тепловой энергии паровых систем теплоснабжения и систем охлаждения	± 3
$(\delta_{\rm UK}),\%$	
ИК электроэнергии (бик), %	± 2
Пределы допускаемого суточного хода часов (Δ_{τ}), с	± 9
Пределы допускаемой погрешности ИК массы и объема теплоносителя соответству	уют пределам до-
пускаемой погрешности ИК массового и объемного расхода	

Таблица 5 – Метрологические характеристики ИК газов и газовых смесей

Таолица 3 — Метрологические характеристики ик тазовых емесеи						
Наименование	Пределы допускаемой относительной погрешно-					
измерительного канала	сти, %, для уровня точности измерений					
(для газов и газовых смесей)	A	Б	В	Γ_1	Γ_2	
ИК термодинамической температуры	± 0,2	$\pm 0,\!25$	± 0,3	$\pm 0,5$	± 0,6	
ИК абсолютного давления	$\pm 0,3$	$\pm 0,45$	$\pm 0,85$	± 1,2	± 1,7	
ИК массы, расхода и объема в рабочих усло-	$\pm 0,5$	$\pm 0,75$	\pm 1,0	$\pm 2,0$	± 1,5	
виях при измерении расходомерами массового						
и объемного расхода соответственно						
ИК массы, расхода и объема, приведенных к	$\pm 0,75$	\pm 1,0	\pm 1,5	$\pm 2,5$	$\pm 2,5$	
стандартным условиям при измерении расхо-						
домерами объемного расхода						
ИК массы, расхода и объема, приведенных к	$\pm 0,5$	$\pm 0,75$	\pm 1,0	± 1,5	$\pm 2,0$	
стандартным условиям при измерении						
с помощью СУ						
ИК массы, расхода и объема, приведенных к	-	-	± 1,0	± 1,5	± 2,0	
стандартным условиям при измерении						
с помощью ССУ						

Пределы допускаемой погрешности ИК массы и объема газа соответствуют пределам допускаемой погрешности ИК массового и объемного расхода

Таблица 6 – Основные технические характеристики

Наименование характеристики	Значение характеристики
Напряжение питания комплекса, В:	
- внешний источник постоянного тока	от 18 до 36
- внешний источник постоянного тока для питания пассивных	
выходных сигналов ИП расхода	от 12 до 28
- литиевая батарея	от 3,1 до 3,7
Габаритные размеры, масса и потребляемая мощность	определяются составом
	комплекса
Условия эксплуатации:	
преобразователей расчетно-измерительных:	
- температура окружающего воздуха для основного варианта	
исполнения, °С	от −10 до +50
- температура окружающего воздуха для варианта исполнения	
«T», °C	от –40 до +70
- атмосферное давление, кПа	от 84 до 106,7
- относительная влажность при температуре 35 °C, %	не более 95
измерительных преобразователей	в соответствии с описанием ти-
1 1 1	па на ИП
Средняя наработка на отказ, ч	70000
Средний срок службы, лет	12

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации типографским способом, а также на лицевую панель комплекса методом трафаретной печати.

Комплектность средства измерений

Таблица 7 – Комплектность комплексов

Наименование	Обозначение	Кол.
Преобразователи расчетно-измерительные	ТУ 4213-060-44147075-02	1-16 шт.
ТЭКОН-19		
Преобразователи расчетно-измерительные	ТУ 4213-091-44147075-07	1-16 шт.
ТЭКОН-19Б		
ИП расхода и счетчики электрической энергии	-	0-64 шт.
ИП температуры	-	0-64 шт.
ИП абсолютного и избыточного давления	-	0-64 шт.
ИП разности давления	-	0-64 шт.
Барьеры искрозащиты	-	0-256 шт.
Руководство по эксплуатации	Т10.00.93 РЭ	1 экз.

Сведения о методиках (методах) измерений

приведены в разделе «Методы измерений» руководства по эксплуатации Т10.00.93 РЭ.

Нормативные и технические документы, устанавливающие требования к комплексам учета энергоносителей ТЭКОН-20К

TP TC 020/2011 Технический регламент Таможенного союза «Электромагнитная совместимость технических средств»;

Постановление Правительства Российской Федерации от 18 ноября 2013 г. № 1034 «О коммерческом учете тепловой энергии, теплоносителя»;

Постановление Правительства Российской Федерации от 4 сентября 2013 г. № 776 «Об утверждении Правил организации коммерческого учета воды, сточных вод»;

Приказ Минэнерго России от 30 декабря 2013 г. № 961 «Об утверждении Правил учета газа»;

Приказ Минстроя России от 17 марта 2014 г. № 99/пр «Об утверждении Методики осуществления коммерческого учета тепловой энергии, теплоносителя»;

ГОСТ Р ЕН 1434-1-2011 Теплосчетчики. Часть 1. Общие требования;

ГОСТ Р ЕН 1434-4-2011 Теплосчетчики. Часть 4. Испытания в целях утверждения типа;

ГОСТ Р 8.592-2002 ГСИ. Тепловая энергия, потребленная абонентами водяных систем теплоснабжения. Типовая методика выполнения измерений;

ГОСТ 8.632-2013 ГСИ. Метрологическое обеспечение измерительных систем узлов учета тепловой энергии. Основные положения;

ГОСТ Р 8.728-2010 ГСИ. Оценивание погрешностей измерений тепловой энергии и массы теплоносителя в водяных системах теплоснабжения;

ГОСТ Р 8.778-2011 ГСИ. Средства измерений тепловой энергии для водяных систем теплоснабжения. Метрологическое обеспечение. Основные положения;

ГОСТ Р 51649-2014 Теплосчетчики для водяных систем теплоснабжения. Общие технические условия;

ГОСТ 8.586.5-2005 ГСИ. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Методика выполнения измерений;

ГОСТ Р 8.740-2011 ГСИ. Расход и количество газа. Методика измерений с помощью турбинных, ротационных и вихревых расходомеров и счетчиков;

ГОСТ Р 8.741-2019 ГСИ. Объем природного газа. Общие требования к методикам измерений;

ГОСТ 34770-2021 Газ природный. Стандартные условия измерения и вычисления физико-химических свойств;

ГОСТ 8.611-2013 ГСИ. Расход и количество газа. Методика (метод) измерений с помощью ультразвуковых преобразователей расхода;

ГОСТ Р 8.995-2020 ГСИ. Объемный расход и объем природного газа. Методика (метод) измерений с применением мембранных и струйных счетчиков газа;

МИ 3213-2009 ГСИ. Расход и объем газа. Методика выполнения измерений с помощью ультразвуковых преобразователей расхода;

МИ 3173-2008 ГСИ. Расход и количество жидкостей и газов. Методика выполнения измерений с помощью осредняющих трубок «Torbar»;

МИ 2667-2011 ГСИ. Расход и количество жидкостей и газов. Методика измерений с помощью осредняющих напорных трубок «ANNUBAR DIAMOND II+», «ANNUBAR 285», «ANNUBAR 485» и «ANNUBAR 585». Основные положения;

ТУ 4218-093-44147075-07 Комплекс учета энергоносителей ТЭКОН-20К. Технические условия.

Изготовители

Общество с ограниченной ответственностью «КРЕЙТ» (ООО «КРЕЙТ»)

ИНН 6659039392

Адрес: 620146, г. Екатеринбург, пр-д Решетникова, д. 22а

Юридический адрес: 620027, г. Екатеринбург, ул. Луначарского, д. 48/60

Общество с ограниченной ответственностью «Инженерно-внедренческое предприятие КРЕЙТ» (ООО «ИВП КРЕЙТ»)

ИНН 6659141519

Адрес: 620146, г. Екатеринбург, пр-д Решетникова, д. 22а

Испытательный центр

Уральский научно-исследовательский институт метрологии - филиал Федерального государственного унитарного предприятия «Всероссийский научно-исследовательский институт метрологии имени Д.И.Менделеева» (УНИИМ — филиал ФГУП «ВНИИМ им. Д.И.Менделеева»)

Адрес: 620075, г. Екатеринбург, ул. Красноармейская, д. 4

Уникальный номер записи в реестре аккредитованных лиц № RA.RU.311373.